Aerobic Oxidations of C_{60}^2 in the Presence of PhCN and PhCH₂CN: Oxygenation versus Dehydrogenation Reactions

Hui-Lei Hou and Xiang Gao*

State Key Laboratory of Electroanal[yti](#page-4-0)cal Chemistry, Changchun Institute of Applied Chemistry, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China

S Supporting Information

[AB](#page-4-0)STRACT: [Aerobic oxida](#page-4-0)tions of dianionic C_{60} were examined in PhCN and PhCH₂CN, where dioxygen was activated to O_2 ^{•–} via the single-electron transfer from C_{60}^2 ^{2−} and underwent oxygenation and dehydrogenation reactions, respectively. Addition of PhCH₂Br led to further benzylation for the oxygenated product but not for the dehydrogenated one, suggesting that the

initial two negative charges were preserved for the intermediates of the oxygenation reaction but not for those of the dehydrogenation reaction.

Carbanions are important reactive intermediates in organic
synthesis.^{1−3} Oxidation of such species with dioxygen
loads to the formation of alcohols wie a supersystem and solice leads to the formation of alcohols via a superoxide anion radical mechanism.⁴ [Wit](#page-4-0)h the recent development of fullerene chemistry, it has been shown that fullerene anions, represented by C_{60}^{2-} , a[re](#page-4-0) an important class of carbanions that can be readily prepared and used as building blocks for fullerene functionalizations.5−¹¹ Similar to general carbanions, anionic fullerenes are sensitive to O_2 and are among the rare examples of non-metal ca[talys](#page-4-0)ts capable of oxygen activation.12−¹⁴ However, in most cases, the generated superoxide anion radical either evolved into reactive oxygen species (ROS) for [DNA](#page-4-0) cleavage 12,13 or was involved in the reductive polymerization of anionic C_{60} .^{15,16} Only in very limited cases has the activated oxygen [been](#page-4-0) shown to undergo reactions with C_{60} to afford well-structu[red](#page-4-0) C_{60} derivatives,^{17−19} which is quite unusual considering the rich chemistry of fullerenes.²⁰

We have recently reported [the sy](#page-4-0)nthesis of C_{60} oxazoline compounds $(1, 2, 4)$ and 3 in Scheme 1) via th[e r](#page-5-0)eaction involving

trianionic C_{60} species and nitriles.^{21,22} The reaction is intriguing since it shows a room-temperature attack of nitriles, which are typically inert and require harsh [condi](#page-5-0)tions for transformations. However, the origin of the oxygen atom still remains ambiguous, and the reaction mechanism has not been clarified.

An alternative approach for conversion of C_{60} and nitriles into C_{60} oxazolines was achieved by Wang and co-workers with the use of FeClO₄·6H₂O as both the catalyst and oxygen source,²³ where a much higher temperature was required compared to t[he](#page-5-0) reaction initiated by anionic C_{60} . Herein, we report the aerobic oxidations of C_{60}^{2-} in the presence of PhCN and $PhCH₂CN$. The results show that dioxygen is activated by C_{60}^{2-} via SET (single-electron transfer), and the generated O_2 ^{•-} undergoes either oxygenation for the formation of fullerene oxazolino heterocycles (1 and 2) or dehydrogenation reaction for methanofullerene (4 in Scheme 1), depending on the structures of the nitriles.

Details of the aerobic oxidation of C_{60}^{2-} in PhCN are described in the Experimental Section. The crude products were partially soluble in toluene, and the soluble part was subjected to HPL[C purification, while t](#page-3-0)he insoluble part was likely due to the polymerization involving C_{60} epoxide species^{15,16,24} and remained unidentified. HPLC (Figure S1 in Supporting Information) shows the formation of compound 1, whose [ide](#page-4-0)[ntit](#page-5-0)y is confirmed by spectral chara[cterizations in](#page-4-0) [light of previous work.](#page-4-0) $21,23$ The results show unambiguously that the oxygen atom for the C_{60} oxazolines obtained from trianionic C_{60} species [is fr](#page-5-0)om dioxygen, consistent with the electrophilic nature of the oxygen atom exhibited during the reaction.²² The fact that only C_{60}^{3-} could undergo the reaction while $C_{60}^{\ 2-}$ could not as observed previously^{21,22} is likely due to the grea[ter](#page-5-0) reactivity of C_{60}^{3-} compared with that $C_{60}^{2-25,26}$ and the existence of only traces of dioxy[gen i](#page-5-0)n the reaction system.

In situ cyclic voltammetry was performed to follow the reaction as shown in Figure 1. The most notable feature is the deformation of the cyclic voltammograms (CVs) of C_{60}^2 ² after ad[di](#page-1-0)tion of air (oxygen), indicating a reaction involving C_{60}^{2-2}

Received: December 26, 2011 Published: February 8, 2012

Figure 1. In situ CVs of 200 mg of dianionic C_{60} in 150 mL of PhCN solution containing 0.1 M TBAP with the addition of 0, 50, 100, 200, and 300 mL of air along with the flow of argon.

and O_2 occurred. An irreversible anodic wave appeared at −0.53 V vs SCE, which has been assigned to the singly bonded dianionic oxazolino C_{60} intermediate.²⁷ The irreversible anodic wave kept increasing as more air was introduced; however, the overall yield of the heterocyclic prod[uct](#page-5-0) might decrease due to the formation of more polymerized materials.

In order to have a better understanding of the reaction mechanism, PhCH₂Br was added into the air-injected $C_{60}^{2-}/$ PhCN system. Interestingly, cis-1 1,4-benzylated oxazolino C_{60} product (2) was obtained (Figure S2 in Supporting Information for HPLC), indicating that the initial two negative charges on C_{60} cage were pres[erved for the intermediates](#page-4-0) [during the r](#page-4-0)eaction. Since the $E_{1/2}$ values for the redox couples of C_{60} ^{•–}/ C_{60}^{2-} and O_2/O_2 ^{•–} are very close (−0.84 and −0.89 V vs SCE, Figure S3 in Supporting Information), it is likely that a SET occurs from C_{60}^{2-} to dioxygen to form C_{60}^{0-} and O₂^{•-.15,16} [Such an electron-transfer is enhance](#page-4-0)d especially when the generated O_2 ^{*-} is consumed in the subsequent reactions. The [pres](#page-4-0)ervation of the two negative charges for the intermediates of the reaction implies that the generated O_2 ^{•−} would combine with C_{60} [•] via the radical coupling reaction during the subsequent steps with the formation of \tilde{C}_{60} ⁻-O₂⁻.

The essential role of C_{60}^{2-} in the oxygenation reaction was demonstrated by the control reaction of $\overline{C_{60}}^{\bullet-}$ with $O_2^{\bullet-}$ (KO₂) in 18-crown-6 ether) in PhCN, where most of the products were toluene-insoluble materials with no oxazolino product being obtained. The C_{60} ⁻-O₂⁻ is expected to form via the radical coupling reaction of C_{60} ^{•–} with O_2 ^{•–}; however, the critical reductive cleavage of the O−O bond is inhibited by the lack of C_{60}^{2-} , which hinders the formation of 1.

To obtain a better understanding of the reaction involving C_{60}^{2-} and O_2 , the reaction was performed with the introduction of benzyl cyanide ($PhCH₂CN$). Compared to $PhCN$, PhCH₂CN has a much narrower electrochemical potential window (Figure S4 in Supporting Information), and the experiment was therefore carried out by first producing C_{60}^{2-} (90 mg) i[n PhCN \(70 mL\), followed by addition](#page-4-0) of 5 μ L of $PhCH₂CN$ and injection of air, rather than being performed in neat PhCH₂CN solution to avoid complications caused by possible electroreduction of PhCH₂CN. Surprisingly, no C_{60} oxazolino product was obtained. Instead, a dehydrogenated product, 1′-cyano-1′-phenyl-1,2-methano[60]fullerene (4) was produced (Figure S5a in Supporting Information for HPLC). The structure proof for compound 4 is given below, including

an X-ray structure. Notably, C_{60} oxazolino product was obtained from the reaction of C_{60} with PhCH₂CN and FeClO₄·6H₂O,²³ indicating that the mechanisms for the nitrile activation by anionic C_{60} and $\mathrm{FeClO}_4\text{\cdot}6\mathrm{H}_2\mathrm{O}$ are different. The absence of the [ox](#page-5-0)ygenated product for the aerobic oxidation of C_{60}^{2-} involving PhCH₂CN was further confirmed as more PhCH₂CN (90 μ L) was used, where C₆₀ multiple adducts were likely formed as judged by the shortened HPLC retention time (Figure S5b in Supporting Information). Notably, as the ¹H NMR of the crude reaction mixture (Figure S6 in Supporting I[nformation\) implies, there should be](#page-4-0) only dehydrogenated products formed since the resonanc[es corresponding to the](#page-4-0) [methylene p](#page-4-0)rotons of oxygenation products are missing.²³

Figure 2 shows the X-ray single-crystal structure of compound 4 with partial atomic numbering. The m[eth](#page-5-0)ano

Figure 2. ORTEP diagram for 4 with 50% thermal ellipsoids. Hydrogen atoms and solvent molecules were omitted for clarity.

functionality is clearly present. The C1−C2−C61 group forms a nearly equilateral triangle, with the bond lengths of C1−C2, C2−C61, and C61−C1 being 1.593(4), 1.520(3), and 1.517(3) Å, respectively. The most notable feature of the structure is the linear nature of C61–C62–N1 (177.7(3)^o) and a distance of 1.142(3) Å for the C62−N1 bond length, which shows explicitly that the C \equiv N functionality in PhCH₂CN is preserved in the reaction.

The structure of compound 4 is further supported by accurate MS, ¹H and ¹³C NMR, and UV–vis characterizations (Figures S7−S10 in Supporting Information). The [M + H]⁺ $(C_{68}H_6N^+$, calcd 836.04948) appears at 836.04878, and the [M $+$ Na]⁺ (C₆₈H₅NNa⁺[, calcd 858.03142\) is sho](#page-4-0)wn at 858.03300 in the mass spectrum. In the ${}^{1}H$ NMR, the resonances corresponding to methylene protons are missing. A total of 27 resonances are seen for the sp^2 C₆₀ carbons in the ¹³C NMR, indicating that the compound has C_s symmetry, and the resonance corresponding to the cyano carbon atom appears at 114.8 ppm. As for the UV−vis spectrum, an absorption spike is shown at 426 nm, consistent with the characteristic absorption band for methanofullerenes.²⁸

Benzylation experiment was also performed by adding PhCH₂Br i[n](#page-5-0)to the reaction mixture of C_{60}^{2-} with O₂ and PhCH₂CN prior to oxidation. However, no benzylated product of compound 4 was obtained, indicating that the precursor of 4 is no longer a dianion, suggesting that the resulting C_{60} ^{$-$} and O₂^{•-} did not combine together after being generated during this reaction pathway. A reaction mechanism is therefore

Scheme 2. Proposed Mechanism for the Aerobic Oxidations of C_{60}^2 [−] in the Presence of PhCN and PhCH₂CN^a

 a The negative charge is drawn in the hexagon of C₆₀ for clarity. The negative charge should actually be delocalized over a much larger area of C₆₀ due to π -conjugation.

proposed for the aerobic oxidation of C_{60}^{2-} in the presence of PhCN and PhCH₂CN as shown in Scheme 2.

For both the oxygenation and dehydration reactions, the reactions were initiated by a SET between C_{60}^{2-} and O_2 to afford C_{60} ^{•−} and O_2 ^{•−}, which underwent a different pathway during the subsequent reaction steps. For the formation of compounds 1 and 2, the resulting $C_6^{\bullet -}$ and $O_2^{\bullet -}$ formed $C_{60}^{\bullet -}$ O_2 ⁻ by a follow-up radical coupling reaction, which was also proposed to account for the electroreductive polymerization of C_{60} in the presence of dioxygen.^{15,16} The combination of two negatively charged radical anions $(C_{60}^{\bullet -}$ and $O_2^{\bullet -})$ may seem unreasonable at the first sight; [howe](#page-4-0)ver, it is noteworthy that the unit negative charge on C_{60} is actually delocalized over the whole surface due to the π -conjugation of the molecule, where each individual carbon atom carries only 1/60 of the unit negative charge due to the π -conjugation of the molecule, which may greatly decrease the repulsion between the two negatively charged species. The O−O bond in C_{60} ⁻-O₂⁻ was then cleaved via reduction by C_{60}^{2-} , similar to the O−O cleavage mediated by Grignard reagent, 4 leading to the formation of the key intermediate C_{60} ⁻-O⁻. The results indicate that the C_{60} ⁻-O⁻ is a strong o[xy](#page-4-0)gen nucleophile, capable of attacking the inert cyano group under ambient conditions, and forms anionic imine species. The anionic imine subsequently attacks C_{60} , accompanied by a heterolytic cleavage of the C₆₀ $-$ O bond, forming the dianionic precursor 5, which is suggested to account for the irreversible anodic wave at −0.53 V vs SCE in $CV²⁷$ Since the intermediate 5 retains two negative charges, it would lead to the formation of 2 upon addition of benzyl [br](#page-5-0)omide or compound 1 upon oxidation. The assignment of $C_{60}O^{2-}$ as the nucleophile capable of attacking the cyano group under ambient conditions is reasonable, because $C_{60}O^-$ should be a weaker nucleophile than OH[−] due to the strong electronegativity of C_{60} , while OH⁻ itself is unable to attack cyano group under mild conditions; as for C_{60}^{2-} , it is a weak nucleophile due to the delocalization of the charges over the C_{60} skeleton.⁹ In addition to its unusual nucleophilicity, $C_{60}O^{2-}$ has been identified as the initiator [f](#page-4-0)or electroreductive polymerization of $C_{60}O^{15,24}$ Notably, an alternative pathway of O−O cleavage was proposed via the oxid[ati](#page-4-0)[on](#page-5-0) of $C_{60}O_2^{2-}$ by C_{60}^{16} leading to the formation of $C_{60}O^-$; however, such a pathway is unlikely for the current

case since the generated $C_{60}O^-$ intermediate has only one negative charge and would therefore not be able to react with benzyl bromide during the subsequent steps, inconsistent with the experimental observations.

As for the aerobic oxidation of C_{60}^{2-} in the presence of PhCH₂CN, the generated superoxide anion radical would undergo dehydrogenation reaction rather than the oxygenation reaction due to the greater reactivity of the methylene protons. In this process, the resulting O_2 ^{•–} would first remove an H \bullet to form PhCH \bullet CN, which would then react with C_{60} ^{\bullet −} and produce the singly bonded C₆₁HPhCN[−] intermediate. The $\overline{O_2}^{\bullet-}$ would then remove the remaining methine proton, followed by an intramolecular cyclization, and form the $C_{61}PhCN^{\bullet-}$ intermediate. Since the intermediate bears only one negative charge, it would not undergo the benzylation reaction with $PhCH₂Br$ and would produce compound 4 via oxidation. Control reaction of C_{60} ^{•–} with O_2 ^{•–} (KO₂ in 18crown-6 ether) and $PhCH₂CN$ led to the formation of compound 4, indicating that no reductive cleavage of O−O by C_{60}^2 ⁻ is required for the dehydrogenation pathway. Notably, the oxygenation reaction of PhCN is severely inhibited by the dehydrogenation reaction, even though there is much more PhCN than PhCH₂CN (70 mL vs 5 μ L).

The aerobic oxidation of C_{60}^{2-} was further examined with the use of $CH_3CH_2OOCCH_2CN$ and m-CH₃PhCN. No methanofullerene product was obtained when $CH₃CH₂OOCCH₂CN$ was used, confirming that the reaction of O_2 ^{*-} with the aliphatic protons takes place via the radical mechanism rather than the acid−base mechanism, since the methylene protons of CH₃CH₂OOCCH₂CN are more acidic than the counterparts of PhCH₂CN ($pK_a = 13.1$ vs $pK_a =$ 21.9).^{29,30} For both the CH₃CH₂OOCCH₂CN and m- $CH₃PhCN$ cases, a large amount of toluene-insoluble poly[merize](#page-5-0)d materials (≥80% weight) were produced, while much less oxazolino product was obtained for m -CH₃PhCN compared with the case when PhCN was used, and no oxazolino product was obtained for $CH₃CH₂OOCCH₂CN$. Such an outcome is likely due to the presence of aliphatic protons of the molecules, which produce radical species via the reaction of $O_2^{\bullet -}$, consistent with the results of PhCH₂CN.

Figure 3 shows the cyclic voltammogram of 4 at room temperature. Unlike previous results on the electrochemistry of

Figure 3. Cyclic voltammograms of compound 4 in PhCN containing 0.1 M TBAP with a scan rate of 0.1 V/s under Ar.

methanofullerenes bearing cyano groups, where the compounds showed decomposition upon reduction at room temperature,³¹ compound 4 exhibits special electrochemical stability by showing two reversible one-electron transfer redox processes wi[th](#page-5-0) $E_{1/2}$ at −0.43 and −0.84 V vs SCE, respectively, which are identical to those of C_{60} . As for the third reduction, the $E_{1/2}$ (−1.32 V vs SCE) is again almost identical to that of C_{60} , but the reducing current is unusually large, which is probably due to an unknown catalytic process, as observed previously for the third reduction of compound 2^{32} As for the fourth reduction, it shows a reversible redox couple with $E_{1/2}$ at −1.82 V vs SCE. However, the compound [ma](#page-5-0)y start to decompose after the fourth reduction, since a new oxidation wave labeled with an asterisk appears at −0.94 V as shown in Figure 3.

In summary, aerobic oxidations of C_{60}^{2-} in the presence of PhCN and PhCH₂CN are reported, where oxygenation and dehydrogenation reactions take place with nitriles depending on their structures. A strong oxygen nucleophile C_{60} ⁻-O⁻ is proposed during the reaction of C_{60}^{2-} and O_2 , which is capable of activating the $C\equiv N$ bond under ambient conditions. On the other hand, dehydrogenation reaction is more favorable for $PhCH₂CN$ due to the presence of aliphatic protons, leading to the formation of methanofullerenes.

EXPERIMENTAL SECTION

General Methods. Tetra-n-butylammonium perchlorate (TBAP) was recrystallized from absolute ethanol and dried under vacuum at 313 K prior to use. All reactions were performed under argon atmosphere unless otherwise noted. Benzonitrile (PhCN) was distilled over P_2O_5 under vacuum at 305 K prior to use. All other reagents and solvents were obtained commercially and used as received. ^IH NMR spectra were recorded on 600 MHz spectrometer, and 13C NMR spectra were recorded on 150 MHz spectrometer. MALDI (matrixassisted laser desorption ionization) mass spectrum was acquired using a MALDI-TOF mass spectrometer equipped with a nitrogen laser. Accurate MS measurement was performed using an ESI electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer (ESI FT-ICR MS).

Controlled-potential bulk electrolysis was carried out on a potentiostat/galvanostat using an "H" type cell that consisted of two platinum gauze electrodes (working and counter electrodes) separated by a sintered glass frit. A three-electrode cell was used for CV measurements and a glassy carbon, a platinum, and a saturated calomel electrode (SCE) were used as working electrode, counter electrode, and reference electrode, respectively. A fritted-glass bridge of low porosity which contained the solvent/supporting electrolyte mixture was used to separate the SCE from the bulk of the solution.

Aerobic Oxidation of C_{60}^2 ⁻ in PhCN Followed by Electro**chemical Oxidation.** Typically, 200 mg (277.8 μ mol) of C_{60} in 150 mL of freshly distilled PhCN solution containing 0.1 M TBAP was electroreduced at −1.10 V vs SCE under Ar atmosphere. The potentiostat was switched off once the theoretical number of electrons required for reducing C_{60} to C_{60}^{2-} was achieved to avoid the production of C_{60}^{3-} . The generated C_{60}^{2-} was exposed to oxygen by injecting 100 mL of air (molar ratio $C_{60}/O_2 \approx 1:3$) along with the flow of Ar. The color of the solution changed immediately from red to green. The reaction mixture was then oxidized electrochemically back to neutral with a potential of 0 V vs SCE. The solvent was removed under reduced pressure, and the residue was washed with methanol to remove TBAP. The obtained crude product was purified using a Buckyprep HPLC column eluted with toluene at a flow rate of 3.7 mL/min and the detector wavelength set at 380 nm. Compound 1 was obtained with a yield of 18% (43 mg) along with 55 mg of unreacted C_{60} . The rest of the reaction mixture was insoluble in toluene or CS_2 and was likely due to the polymerization reaction involving C_{60} epoxide species. The spectral data for 1 are in good agreement with previous results. Spectral data for 1: MALDI FOT-MS, m/z calcd for $C_{67}H_5NO [M + H]^+$ 840.04, found 840.04; ¹H NMR (600 MHz, in $CS_2/CDCl_3$ solvent) δ ppm, 8.42 (d, 2H), 7.66 (t, 1H), 7.60 (t, 2H); ¹³C NMR (150 MHz, CS₂, DMSO-d₆ as the external lock solvent) δ ppm, 164.3 (1C, C=N), 147.5 (2C), 147.1 (1C), 145.7 (4C), 145.5 (2C), 145.4 (2C), 145.3 (2C), 145.1 (2C), 145.0 (2C), 144.8 (2C), 144.5 (2C), 144.4 (2C), 144.2(2C), 143.9 (2C), 143.6 (2C), 143.0 (2C), 142.1 (2C), 142.1 (2C), 142.0 (2C), 141.7 (4C), 141.6 (2C), 141.4 (2C), 141.3 (4C), 139.8 (2C), 138.9 (2C), 137.2 (2C), 136.6(1C), 135.4 (2C), 131.7 (1 C, Ph), 128.7 (2C, Ph), 128.1 (2C, Ph), 126.4 (1C, Ph), 96.6 (1C, sp³, C−O), 91.6 (1C, sp³, C−N).

Aerobic Oxidation of C_{60}^{2-} in PhCN Followed by Quenching with PhCH₂Br. Procedures for the generation and dioxygen oxidation of C_{60}^2 ⁻ are identical to those described above. After introduction of $O₂$ 100-fold PhCH₂Br was added to the system. The benzylation reaction was allowed to proceed for 3 h under Ar. The obtained crude product was purified by HPLC, and the workups for purifications were similar to those where the mixture was electrochemically oxidized back to neutral. Starting with 200 mg C_{60} , compound 2 was obtained with a 16% yield (45 mg), along with small amount of $1,4-(PhCH₂)₂C₆₀$ (4 mg), compound 1 (5 mg), and unreacted C_{60} (3 mg). The rest of the reaction mixture was insoluble in toluene or CS_2 and was likely due to the polymerization reaction involving C_{60} epoxide species. The spectral data for 2 are in good agreement with previous results. Spectral data for 2: MALDI FOT-MS, m/z calcd for $C_{81}H_{19}NO$ [M + $[\text{H}]^+$ 1022.2, found 1022.2; ¹H NMR(600 MHz, in CS₂, DMSO- d_6 as the external lock solvent) δ ppm, 8.13 (d, 2H), 7.40 (t, 1H), 7.36 (t, 2H), 7.11 (*d*, 4H), 6.97–6.79 (*m*, 6H), 4.11 (AB_q, Δν_{AB} = 324 Hz, J_{AB} = 12 Hz), 4.06 (AB_q , $\Delta\nu_{AB}$ = 258 Hz, J_{AB} = 12 Hz); ¹³C NMR (150 MHz, CS_2 , DMSO- d_6 as the external lock solvent) δ ppm, 161.6 (1C, C=N), 152.6 (1C), 152.4 (1C), 148.7 (1C), 148.5 (1C), 148.4 (1C), 148.2 (1C), 147.5 (1C), 146.6 (1C), 146.6 (2C), 146.5 (2C), 146.3 (1C), 145.9 (1C), 145.6 (1C), 145.5 (2C), 144.9 (2C), 144.8 (1C), 144.7 (1C), 144.7 (1C), 144.6 (1C), 144.2 (1C), 144.2 (1C), 144.0 (2C), 143.8 (1C), 143.8 (2C), 143.7 (2C), 143.4 (2C), 143.3 (1C), 143.0 (1C), 142.9 (1C), 142.8 (1C), 142.6 (1C), 142.4 (1C), 142.3 (1C), 142.2 (1C), 142.0 (1C), 141.7 (1C), 141.6 (1C), 141.3 (1C), 141.2 (2C), 141.0 (1C), 139.3 (1C), 139.0 (1C), 138.9 (1C), 137.6 (1C), 136.8 (1C), 136.4 (1C), 135.9 (1C), 135.8 (1C), 134.5 (1C, Ph), 134.2 (1C, Ph), 133.7 (1C, Ph), 131.5 (1C, Ph), 131.5 (1C, Ph), 131.3 (1C, Ph), 128.3 (2C, Ph), 128.2 (2C, Ph), 127.6 (1C, Ph), 127.5 (2C, Ph), 127.4 (2C, Ph), 127.3 (1C, Ph), 126.6 (1C, Ph), 126.3 (1C, Ph), 97.1 (1C, sp³, C−O), 90.8 (1C, sp³, C−N), 62.2 (1C, sp³, C− $CH₂Ph$), 61.2 (1C, sp³, C–CH₂Ph), 46.2 (1C, CH₂), 45.3 (1C, CH₂).

Aerobic Oxidation of C_{60}^2 ⁻ in the Presence of PhCH₂CN. Because PhCH₂CN starts to be reduced around −0.8 V vs SCE, the aerobic oxidation of C_{60}^{2-} was performed by first generating C_{60}^{2-} in PhCN, followed by adding a small amount of PhCH₂CN along with O_2 to avoid the electroreduction of PhCH₂CN. Typically, 90 mg of C_{60} (125 µmol) was electrolyzed with a potential of -1.10 V vs SCE under Ar in 70 mL of 0.1 M TBAP PhCN solution. The potentiostat was switched off once the theoretical number of electrons required for reducing C₆₀ to C₆₀^{2−} was achieved to avoid the production of C₆₀^{3−}.

The Journal of Organic Chemistry Note

Then 5 μ L of PhCH₂CN was added to the solution, followed by injecting 150 mL of air (molar ratio $C_{60}/O_2 \approx 1:11$) along with the flow of Ar. The reaction mixture was then oxidized electrochemically back to neutral with a potential of 0 V vs SCE, and the crude product was purified using a Buckyprep HPLC column eluted with toluene. Compound 4 was obtained with 16% yield (17 mg), along with 21 mg of unreacted C₆₀. Spectral data for 4: positive ESI FT-ICR MS, m/z calcd for $C_{68}H_6N^+$ [M + H]⁺ 836.04948, found 836.04878; calcd for $C_{68}H_5NNa^+$ [M + Na]⁺ 858.03142, found 858.03300; UV-vis (hexane) λ_{max} 255, 325, and 426 nm; ¹H NMR (600 MHz, in CS₂/ CDCl₃) δ ppm, 8.02 (d, 2H), 7.60 (m, 3H); ¹³C NMR (150 MHz, $CS_2/CDCl_3$) δ ppm, 145.2 (2C), 145.1 (2C), 145.1 (4C), 144.8 (4C), 144.7 (2C), 144.7 (2C), 144.6 (4C), 144.5 (2C), 144.4 (2C), 144.3 (1C), 144.2 (2C), 144.0 (1C), 143.7(2C), 143.5(2C), 142.9(2C), 142.8(2C), 142.8 (2C), 142.7 (3C), 142.7(1C), 142.2 (2C), 141.9 (2C), 141.8 (2C), 141.5 (2C), 141.1 (2C), 140.8 (2C), 138.8 (2C), 138.7 (2C), 131.6 (2C, Ph), 130.0 (1C, Ph), 129.1 (2C, Ph), 128.7 $(1C, Ph)$, 114.8 $(1C, sp^3, C\equiv N)$, 71.9 $(2C, sp^3)$, 36.7 $(1C, PhCCN)$.

X-ray Single-Crystal Diffraction of 4. Black crystals of 4 were obtained by slowly diffusing hexane into a $CS₂$ solution of 4 at room temperature. Single-crystal X-ray diffraction data were collected on an instrument equipped with a CCD area detector using graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å) in the scan range $1.37^{\circ} < \theta < 26.14^{\circ}$. The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program within WINGX. Crystal data of $4.2CS₂$: $C_{69}H_5NOS_4$, $M_w = 975.98$, triclinic, space group P-1, $a = 9.9728(8)$ Å, b = 13.2397(10) Å, c = 15.0024(11) Å, α = 93.1580(10)°, β = 97.3430(10)°, γ = 104.5030(10)°, $V = 1894.2(3)$ Å³, Z = 2, D_{calcd} = 1.711 Mg m⁻³, μ = 0.311 mm⁻¹, T = 191(2) K, crystal size 0.12 × 0.16 \times 0.09 mm³; reflections collected 10619, independent reflections 7418; 4493 with $I > 2\sigma(I)$; R1 = 0.0557 [$I > 2\sigma(I)$], wR2 = 0.1562[$I >$ $2\sigma(I)$]; R1 = 0.0730 (all data), wR2 = 0.1724 (all data), GOF (on F^2) $= 1.063$.

Control Reaction of $C_{60}^{\bullet-}$ with KO₂ in PhCN. $C_{60}^{\bullet-}$ (90 mg) was first generated by electrolysis at a potential of -0.60 V vs SCE in 0.1 M TBAP PhCN solution (70 mL). The potentiostat was switched off once the reduction was complete. One-fold of KO_2 (9 mg) dissolved in 18-crown-6 ether (132 mg, $KO_2/ether = 1:4$ molar ratio) was then put into the C_{60}^- /PhCN solution. The reaction mixture was then oxidized electrochemically back to neutral with a potential of 0 V vs SCE. Almost all of the crude product was insoluble in toluene or $CS₂$, and no oxazoline compound was obtained.

Control Reaction of C_{60} ^{•−} with KO₂ in the Presence of **PhCH₂CN.** C_{60} ^{$-$} (90 mg) was first generated by electrolysis at a potential of −0.60 V vs SCE in 0.1 M TBAP PhCN solution (70 mL). The potentiostat was switched off once the reduction was complete. One-fold of KO_2 (9 mg) dissolved in 18-crown-6 ether (132 mg, $KO_2/$ ether = 1:4 molar ratio) was then put into the C_{60}^- /PhCN solution along with 5 μ L of PhCH₂CN. The reaction mixture was then oxidized electrochemically back to neutral with a potential of 0 V vs SCE. Compound 4 was obtained with a yield of 8% (8 mg), along with unreacted C_{60} (5 mg).

Aerobic Oxidation of C $_{60}$ ^{2−} in the Presence of $\mathsf{CH_3CH_2OOCCH_2CN}.$ Because $\mathrm{C_{60}}$ is insoluble in $CH₃CH₂OOCCH₂CN$, the procedures for the experiment were similar to those when $PhCH₂CN$ was used, i.e., the generation of C_{60} ^{2−} was first carried out in PhCN, and 5 μ L of $CH₃CH₂OOCCH₂CN$ was added into the system along with 150 mL of air. Most of the reaction product was toluene-insoluble materials, and no oxazoline or methanofullerene product was obtained.

Aerobic Oxidation of C_{60}^{2-} in the Presence of m-CH₃PhCN. The procedures were similar to those when PhCN was used, except m-CH3PhCN was used instead of PhCN. Most of the reaction product was toluene-insoluble materials. Starting with 100 mg of C_{60} , only 3 mg of oxazoline product was obtained, along with 11 mg of recovered C_{60}

■ ASSOCIATED CONTENT

6 Supporting Information

X-ray single-crystal crystallographic file for 4 in CIF format; CVs of C_{60} and O_2 , HPLC traces, and copies of accurate MS, ¹H and ¹³C NMR, and UV–vis spectral characterizations of 4. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INF](http://pubs.acs.org)ORMATION

Corresponding Author

*E-mail: xgao@ciac.jl.cn.

Notes

The auth[ors declare no](mailto:xgao@ciac.jl.cn) competing financial interest.

■ ACKNOWLEDGMENTS

The work was supported by the National Natural Science Foundation of China (20972150, 21172212) and the Solar Energy Initiative of the Chinese Academy of Sciences (KGCX2-YW-399 + 9).

■ REFERENCES

(1) Buncel, E.; Durst, T. Comprehensive Carbanion Chemistry, Parts A, B, and C; Elsevier: New York, 1980, 1984, 1987.

(2) Bates, R. B.; Ogle, C. A. In Carbanion Chemistry-Reactivity and Structure Concepts in Organic Chemistry; Hafner, K., Lehn, J.-M., Rees, C. W., Schleyer, P. v. R., Trost, B. M., Zahradnik, R., Eds.; Springer-Verlag: Berlin, Germany, 1983; Vol. 17.

(3) Heathcock, C. H.; Winterfeldt, E.; Schlosser, M. In Modern Synthetic Methods-Topics in Carbanion Chemistry; Scheffold, R., Ed.; VHCA and VCH: Basel, Switzerland, Weinheim, Germany, 1992.

(4) Nobe, Y.; Arayama, K.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 18006−18007 and references therein.

(5) Caron, C.; Subramanian, R.; D'Souza, F.; Kim, J.; Kunter, W.; Jones, M. T.; Kadish, K. M. J. Am. Chem. Soc. 1993, 115, 8505−8506.

(6) Chen, J.; Cai, R.-F.; Huang, Z.-E.; Wu, H.-M.; Jiang, S.-K.; Shao, Q.-F. J. Chem. Soc., Chem. Commun. 1995, 1553-1554.

(7) Boulas, P. L.; Zuo, Y.; Echegoyen, L. Chem. Commun. 1996, 1547−1548.

(8) Subramanian, R.; Kadish, K. M.; Vijayashree, M. N.; Gao, X.; Jones, M. T.; Miller, D. M.; Krause, K.; Suenobu, T.; Fukuzumi, S. J. Phys. Chem. 1996, 100, 16327-16335.

(9) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 9220−9227.

(10) Allard, E.; Delaunay, J.; Cheng, F.; Cousseau, J.; Ordúna, J.; Garín, J. Org. Lett. 2001, 3, 3503−3506.

(11) Zheng, M.; Li, F.; Shi, Z.; Gao, X.; Kadish, K. M. J. Org. Chem. 2007, 72, 2538−2542.

(12) Nakanishi, I.; Fukuzumi, S.; Konishi, T.; Ohkubo, K.; Fujitsuka, M.; Ito, O.; Miyata, N. J. Phys. Chem. B 2002, 106, 2372−2380.

(13) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. J. Am. Chem. Soc. 2003, 125, 12803−12809.

(14) Ohkubo, K.; Kitaguchi, H.; Fukuzumi, S. J. Phys. Chem. A 2006, 110, 11613−11616.

(15) Krinichnaya, E. P.; Moravsky, A. P.; Efimov, O.; Sobczak, J. W.; Winkler, K.; Kutner, W.; Balch, A. L. J. Mater. Chem. 2005, 15, 1468− 1476.

(16) Pieta, P.; Zukowska, G. Z.; Das, S. K.; D'Souza, F.; Petr, A.; Dunsch, L.; Kutner, W. J. Phys. Chem. C 2010, 114, 8150−8160.

(17) Wang, G.-W.; Shu, L.-H.; Wu, S.-H.; Wu, H.-M.; Lao, X.-F. J. Chem. Soc., Chem. Commun. 1995, 1071−1072.

(18) Clavaguera, S.; Khan, S. I.; Rubin, Y. Org. Lett. 2009, 11, 1389− 1391.

(19) Wang, G.-W.; Lu, Y.-M.; Chen, Z.-X.; Wu, S.-H. J. Org. Chem. 2009, 74, 4841−4848.

The Journal of Organic Chemistry Note and The Theorem 2012 Shapes are not the United States of the Note of Note

- (20) Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; Wiley-VCH: Weinheim, Germany, 2005.
- (21) Zheng, M.; Li, F.-F.; Ni, L.; Yang, W.-W.; Gao, X. J. Org. Chem. 2008, 73, 3159−3168.
- (22) Li, F.-F.; Yang, W.-W.; He, G.-B.; Gao, X. J. Org. Chem. 2009, 74, 8071−8077.
- (23) Li, F.-B.; Liu, T.-X.; Wang, G.-W. J. Org. Chem. 2008, 73, 6417− 6420.
- (24) Winkler, K.; Costa, D. A.; Balch, A. L.; Fawcett, W. R. J. Phys. Chem. 1995, 99, 17431−17436.
- (25) Khaled, M. M.; Carlin, R. T.; Trulove, P. C.; Eaton, G. R.; Eaton, S. S. J. Am. Chem. Soc. 1994, 116, 3465−3474.
- (26) Beulen, M. W. J.; Echegoyen, L. Chem. Commun. 2000, 1065− 1066.
- (27) Yang, W.-W.; Li, Z.-J.; Li, F.-F.; Gao, X. J. Org. Chem. 2011, 76, 1384−1389.
- (28) Smith, A. B. III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J.; Owens, K. G.; Goldschmidt, R. J.; King, R. C. J. Am.
- Chem. Soc. 1995, 117, 5492−5502. (29) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J.; Bares, J. E. J. Phys.
- Org. Chem. 1988, 1, 209−223.
- (30) Zhang, X.-M.; Bordwell, F. G. J. Phys. Org. Chem. 1994, 7, 751− 756.
- (31) Keshavarz-K., M.; Knight, B.; Haddon, R. C.; Wudl, F. Tetrahedron 1996, 52, 5149−5159.
- (32) Li, F.-F.; Gao, X.; Zheng, M. J. Org. Chem. 2009, 74, 82−87.